If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11r^2+3r-27=0
a = 11; b = 3; c = -27;
Δ = b2-4ac
Δ = 32-4·11·(-27)
Δ = 1197
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1197}=\sqrt{9*133}=\sqrt{9}*\sqrt{133}=3\sqrt{133}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{133}}{2*11}=\frac{-3-3\sqrt{133}}{22} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{133}}{2*11}=\frac{-3+3\sqrt{133}}{22} $
| (8x^2)/4=0 | | 3x+3=6(x3) | | 16+8x-5=10x-4 | | 7r^2+r-19=0 | | 13x-1=8x+12 | | (2x-10)+(5x+5)+(3x)=180 | | 0=4-(4/(x-2)^2) | | 36(3x+1)=21(6x-6) | | 8x–3(5x–2)=7–10x | | 3t-42=-42+7t | | y+5=25-3y | | x=130,000+.2x | | -6(-4y+2)-9y=7(y-2)-4 | | 3v-43=5(v-7) | | -14.3=3.2+w/7 | | d=16(5^2) | | 44+7x(11+36)=x | | -3.2x=-19.95 | | 12x=288-4x | | 1/5-x/4=x/2-1/3 | | 80+q=455 | | 12÷x=3 | | m^2-10m-10=0 | | 3x=x2 | | (80+25)q=455 | | 12x+21x+24x=100.50 | | 5v^2+6v-3=0 | | 7x=4x+15. | | 8n^2-8n-8=0 | | 7m^2-26m-5=3 | | (5x-1)(8x+3)=0 | | (c+4)(c-9)=0 |